
207

10

Chapter 10
Dialogs

Open and save files

Changing fonts and colours

Printer dialogs

•

•

•

208

10

Dialogs
The tab Dialogs offers a number of Dialogs for files, colours, fonts, images, calendar,
calculator and printer.

OpenDialog
SaveDialog
SelectDirectoryDialog
ColorDialog
FontDialog
FindDialog
ReplaceDialog
OpenPictureDialog
SavePictureDialog
CalendarDialog
CalculatorDialog
PrinterSetupDialog
PrintDialog
PageSetupDialog

We prepare for a new session:

Create a new sub-directory in the lessons-directory: L10_Dialogs
Double click on L03_Start.lpi to start this project
Modify the constants modTxt and verTxt into 'L10_Dialogs. ' and 'Ver: 1.0.'
With Files|Save As save the pascalfile as L10_DialogsP.pas.
Answer with Yes on the question "add directory to path".
Answer with No on the question "remove old files".
With Project|Project Save As save the project as: L10_Dialogs.lpr.
With Project|Project Options adjust title to: L10_Dialogs.

The way to use a Dialog component is to call the method: Execute. We have used this
method already in the previous lessons. The Execute method returns "True" if a selection
is made and "False" if on "Abort" or the close button is clicked. In this case we don't want
to take action.

It is possible to set a number of initial conditions and filters. A title can add some useful
information about the dialog. There is no property hint.

•
•
•
•
•
•
•
•

209

10

OpenDialog, SaveDialog, SelectDirectoryDialog
Let’s start with the file Open- Save- and SelectDir Dialogs.

Add an Open, a Save and a SelectDirectory dialog to the Form by double clicking on the
icons for the components: OpenDialog, SaveDialog and SelectDirectoryDialog in the tab
Dialogs. Name the dialogs: DlOpen, DlSave and DlSelDir.

We need a mechanism to start these Dialogs. And we need to show an opened file.

Add the next sub menu-items to the menu: File. This is how it will look:

We normally do this by double clicking on the component MainMenu. The Menu-editor
opens and we can add before Quit an item "Files". Right click on "Quit", next select Insert
New Item (before), call this new menu-item: MnFiles and change the caption in: Files.

Now right click on the menu-item Files and select "Create submenu". A New Item appears.
Right click on this new item, select "Insert new item (after)" and repeat this 4 times. Adjust
names and captions.

Name	 Caption
MnFlOpen	 Open
MnFlSave	 Save
MnFlSelDir	 SelDir
MnFlSpace	 -
MnFlQuit	 Quit

The caption of MnFlSpace is used to display a separator in the submenu.

In the files sub-menu, select MnFlQuit. In the Events tab, select OnClick and select
MQuitClick.

Add a memo to the Form and call the memo: MeData.

210

10

With these components we have all we need to do some opening and saving.

Select MnFlOpen, go to the tab events and double click on OnClick. Lazarus will create a
new procedure:

procedure	TForm1.MnFlOpenClick(Sender:	TObject);
begin
		...
end;

This procedure will be called when we click on Files|Open and here we can add the actions
we should like to perform. Type in the next code:

procedure	TForm1.MnFlOpenClick(Sender:	TObject);
var
s:	string;
begin

		DlOpen.Title:=	modTxt	+	mes01;
		Sb.Panels[0].Text:=	'';
		If	DlOpen.Execute	=	true	then
		begin

				s:=	DlOpen.FileName;
				MeData.Lines.LoadFromFile(s);
				Sb.Panels[0].Text:=	s;
		end;
end;

 First we adjust the title of the Open Dialog. It makes sense to try to explain what is the
intention of a dialog screen. Mes01 stands for 'Select file.'.

 We like to show the name in the StatusBar. If we do not select anything, we want to show
an empty string.

 The Opendialog is started with the function: DlOpen.. This function returns true when a
file is selected or false when no selection is made or when "abort" is clicked.

 When a file is selected (result is true), we copy the full path of this file into s.

 Next we load the file in the memo MeData	using the function: MeData.Lines.LoadFromFile(s)	
where s contains the full path file name.

 And we show the selected file name in panel[0] van the statusbar.

211

10

Now we can compile the program, and when we start it we can use the menu-item File|Open,
by clicking on this item:

It is possible to choose any file to open. It will be clear,
only files with text produce a readable result. Files with
the extension *.o or *.exe will not show much useful
information in MeData, but files with an extension of
*.lpr, *lpi or *.pas can be examined after opening.

Click on a file, f.i. L10_DialogsP.pas and the text will
show up in MeData. If you would make changes in this
file, the next time this

It is possible to adjust a couple of parameters in the
Open Dialog.

DefaultExt defines the default extension to look for. Doesn’t seems to work yet.

It is possible to define a file in the property "FileName". The dialog will point to this file. It
is useful in the case a "default" file name can be used, but also an alternative should be
available for selection.

The "Filter" is used for the selection of files, depending on the extension. The filter has a
description and an extension, separated by "|".

Text files|*.txt|Pascal files|*.pas|Resource files |*.lsr|All files|*.*

This filter result in the next file types:

It is by the way a good idea to include "All files | *.*".
If users have generated files, that are valid but have
changed extensions, it still is possible to select these
files.

It is possible to change the filter of an Open Dialog.
The type of filter can be made dependent of previous
selections or one Open Dialog can be used for several
parts in the program.

To adjust the filter during run time:

DlOpen.Filter:= 'Text files|*.txt
 |Pascal files|*.pas
 |Resource files|*.lsr
 |Alle files|*.*';

212

10

It is also possible to use the Filter Editor. Double click on the property Filter in the Object-
Inspector of DlOpen.

The property FilterIndex indicates which filter is shown in the extension field of the dialog
when started.

If a filterindex is used indexes indicate, index indicates "no preference"; index 1 points to
the 1st entry: "Text files | *.txt"; index 2 points to the 2nd entry: "Pascal files | *.pas", and
so on.

To start the Open Dialog with the Pascal files filter, set the index to 2.

The property InitialDir indicates the map that will be shown when the Open Dialog is
started:

DlOpen.InitialDir:=	‘e:\’;

This command will show the root for drive e: when the OpenDialog is started.

Another elegant solution is to set InitialDir to the "current directory". This can be done
simply by using the function GetCurrentDir of the MnFlOpen procedure:

DlOpen.InitialDir:=	GetCurrentDir;

There are quite a lot of options in the property "Options". It is possible to inhibit a change
of the map, only ReadOnly files can be shown, etc. In total 24 options are available.

Another good practice is to set the tile of the Open Dialog with a meaningful title. Again all
these properties are adjustable during design time, but also during run time.

213

10

SaveDialog
The SaveDialog offers the possibility to save data to files. The procedure will be called when
we click on Files|Save and we add the next code to the OnClick event of this menu-item:

procedure	TForm1.MnFlSaveClick(Sender:	TObject);
begin

		DlSave.Title:=	modTxt	+	mes02;
		Sb.Panels[1].Text:=	'';
		If	DlSave.Execute	=	true
		then
		begin

				Sb.Panels[1].Text:=	DlSave.FileName;
				MeData.Lines.SaveToFile(DlSave.FileName);
		end;
end;

 First we set the title in the SaveDialog DlSave:

	 'L10_Dialogs'	+	'Save	file.';

 Next we clean the contents of Sb.Panels[0].

 Next we start the function DlSave.Execute.	If no selection is made, we do not perform
any action.

 But if a file is selected, we show this file name and path in Sb.Panels[0] and

 we write the text from MeData to the selected file.

Of course one has to be careful with overwriting existing files. For this reason it is wise to
use the option:

ofOverwritePromt

If an attempt is made to overwrite an existing file, a warning- and confirmation message is
shown. Only if confirmation is given, the file will be overwritten with the new data.

